434

ICALP 2000 / GT-VMT

A Visual Modeling Technique for
Controlling Graph Transformations*

S. GRUNER
Technische Universitdt Berlin

M. KURT
Infonie GmbH Berlin

G. TAENTZER
Technische Universitdt Berlin

~ Abstract
Sophisticated control concepts are necessary to make the application of
graph grammars feasible for practical graph grammar engineering and spec-
ification tasks. For this purpose we introduce hybride control graphs based
on the well known Activity Diagrams. Moreover, we present an interactive
control graph tool showing the practical dimension of our concepts.

Keywords

graph grammars, non-determinism, control graphs, tool

1 Introduction

Graph grammars and graph transformation systems [9] have turned out to be
applicable for solving various problems of recent computer science [3][4]. It is
also known, however, that pure graph grammars are often no suitable solutions
for practical problems, because

e pgraph grammar derivations (as any grammar derivations) are of non-deter-
ministic nature whilst deterministic and predictable behavior is mostly re-
quired, and

o graph grammar derivations are local operations on some data graph whilst
global operations are often required for reasons of consistency between dif-
ferent parts of the data graph which do not belong to the same neighbor-
hood.!

*The project is partially supported by the ESPRIT Basic Research Working Group APPLIGRAPH
and the German Research Council DFG.

1Given a graph replacement rule 7 : L — R, a data graph G and a match m : L — G, the subgraph
m(L) C G is regarded as a neighborhood with respect to r.

435

436 ICALP 2000/ GT-VMT

—

For this reason, different concepts of control have been introduced in the graph
grammar literature recently — in particular, we can mention the PROGRES system
[13] and the GRRR system [11] which both are promising attempts to make the uge
of graph grammars feasible for various application tasks. Comparing the contro]
techniques of PROGRES and GRRR we can observe that they are orthogonal to
each other as shown in Fig.1:

e Whilst the explicit control concepts of PROGRES are powérful they support
a textual notation only. This might be rather inconvenient from the user’s
point of view.

e The opposite is true in GRRR: there we can find visual control concepts the
handling of which seems quite user-friendly, but their control behavior is
built-in, thus: implicit, and cannot be modified by the user according to his
requirements.’

PROORES GRER New Apprasch
expliit impticit explice
rearuat suel aual

Figure 1: comparison of control concepts

Of course, there are many more concepts which cannot all be mentioned due
to lack of space in this short paper, for example the transformation units of [8)
or the rule expressions of [6]. The approach of [8] does not support visual con-
trol structures and is, thus, similar to PROGRES under this point of view. In the
approach of [6], visual control structures are mentioned but not implemented by
a software tool. The story diagram approach of FUTABA [5] is very related to our
work and will be described below.

Starting from this discussion, we want to combine the advantages and avoid
the disadvantages of both the control concepts of PROGRES and GRRR which
means that we head for a controlling system of as well explicit and visual control
structures. Based on the concept of Activity Diagrams, we present an almost com-
pletely implemented visual contro! flow editor for the attributed graph grammar
system AGG [10] as the main contribution of this paper. The control structures
specified with this editor can be interpreted and executed, and the user can watch
the system running on the control flow monitor which is just another operational
view of the control flow editor [7]. The conceptual basis of its control flow dia-
grams stem from a new combination of the widespread UML [14] and the histori-
cal Dijkstra schemas [2][1]. At the end of this introduction it is worth mentioning
that the process of constructing control flow diagrams in the control flow editor

ZImplicit control in GRRR means that the user can attach certain flags on certain nodes which
invoke certain built-in graph replacement strategies. The replacement strategies themselves cannot be
modified.

Gruner et al.: Visual Modeling for Controlling Graph Transformations 437

can be described by graph grammars again such that —back to the beginning—
the methodological “circle” is closed.

2 Finding suitable Control Structures

Manipulating some data graph G by a graph grammar G = {G,ry,... 2T}, we
have to face two different kinds of non-determinism, namely

o the choice of what rule r; shall be applied to G, and
e the choice where a selected rule r; shall be applied within G.

In the following, we are concerned with the first kind of non-determinism, but
not with the second one. This means that we want to be able to determine a finite
application sequence r{);r®);-..; 7" which we call a graph transformation on
G where r) € G forall i = 1,... ,m. The second kind of non-determinism can be
restricted by certain rule parameters determing partial matches already.

Activity Diagrams are a sub-language of the UML [14]. The well-known pro-
gram schemas [1] —Dijkstra schemas are a special class of them— can be re-
garded as ancestors of that UML sub-language. In Fig.2 a small example of an
Activity Diagram is shown.

Figure 2: sketch of an Activity Diagram

As their original semantics is vague, Activity Diagrams can easily be inter-
preted in such a way that our control requirements are fulfilled. This has been sug-
gested by the already discussed approach of [6] as well as by the approach of [5].
There, the action nodes of such “story diagrams” are attributed with whole graph
transformation rules, whereas in our approach the action nodes are mainly at-
tributed with rule names which makes our framework more scenario-independent
and the diagrams less complex.

Please note that in the Activity Diagrams some non-determinism is re-intro-
duced by the concept of arbitrary decisions (fork), which is not part of the Dijkstra
terminology. Well-structured loops (while), however, are not enforced by the Ac-
tivity Diagrams. Instead, the user is able to simulate not only while loops but
arbitrary gofo loops by (ab)using the concept of conditioned decisions (if then
else) which Dijkstra has “considered harmful” for well-known reasons [2].

438 ICALP 2000/ GT-VMT

3 Control Flow Diagrams for Graph
Transformation '

In this section, we present our solution to the problem how graph grammar op-
erations on data graphs can be controlled by visual means. Keeping Dijkstra’s
warning in mind, we extend and restrict the UML Activity Diagrams in such a
way that their advantages are increased and their disadvantages are decreased.
Then we explain how our version of control flow diagrams * are interpreted in a
graph transformation environment.

Figure 3: example of a control flow diagram C for some graph transformation

3.1 Structure

In our control flow diagrams, the items are connected by arrows — representing
the control flow. The arrows may (but need not always) be attached with T and
F symbols. There must be a start symbol o and at least one stop symbol ®. Fur-
thermore we may have rule application symbols O and if-then-else symbols A
(branching on pre-condition). Loops may be constructed with the while symbol o
only, whilst the construction of loops with goto jumps via the A symbol is strictly
forbidden in order to avoid badly structured spaghetti-diagrams. These symbols
may be attached with logical expressions over some variables 7;. Finally we may
fork and join the control flow (without any condition) by using the symbols TT
and 1 | . Fig.3 shows an example of how all these symbols may be used; the defi-
nition can be found in [7].

3.2 Interpretation

The example of the control flow diagram (given in Fig.3 is now explained in an
informal way. Given a graph grammar G = {G,ry,...,r3} the rules r; of which

3The term “control flow diagram” is so widely used in computer science that we did not feel a need
for inventing a special new name for our version of such diagrams,

Gruner et al.: Visual Modeling for Controlling Graph Transformations 439

shall operate on the data graph G. Given further an interpreter T which is able to
operate on C and G by reading in C and writing in G according to the rules of G.

After having started in o, the interpreter tries to apply ry. If this trial has
been successful (post-condition T), I tries to apply r,. Whether successful or
not, I enters the while structure ¢. As soon as rg is applicable (pre-condition F),
I stops at ©, otherwise the application of r4 and rs is tried sequentially in the
loop (pre-condition T'), no matter if with success or without. If the trial of r| has
not been successful, however (post-condition F), I tries to apply r3 and enters
the fork TT afterwards in any case. At this point, I makes a non-deterministic
choice by chance. Either rule rg is tried or the if-then-else structure A is entered:
if r7 is applicable (pre-condition T') this is done, otherwise (pre-condition F) the
application of rg is tried. Finally, T joins at L | and stops at @.

In general, the decision symbols A and ¢ may be attached with expressions in
propositional logic (=, A, V) over the applicability of rules, whereby a proposition
17 is interpreted as “rule r; is applicable in the next step” (cases A, ©) or as “rule
r; has been applicable in the latest step” (case O).

Please note that making decisions on post-conditions () is not equivalent to
making decisions on pre-conditions (A, ¢)! In Fig.3, for example, if 15 has been
applied we are sure that 1 has been applied as well, but we are not sure that r3
has been applied, too, if we only know that 7 has been applied. A run of I by G
through C from o to © is called a graph transformation on G.

It is quite obvious, by the way, that this control system would also be suitable
for graph transformation rules with parameters r;(vary,... ,vary) as known from
systems like PROGRES [13] or FUJABA [5]. Further remarks on the interpreta-
tion and comparisons with other notions of graph transformation, which must be
omitted due to lack of space in this paper, can be found in [7].

3.3 Implementation

At the moment 4, the control flow editor together with the control flow interpreter
I is almost completely implemented, except of unconditioned fork and join con-
cepts TT and LL [7]. The implementation language is JAVA [12], and an API is
provided for the sake of re-use. The integration of our control flow editor with the
already existing graph grammar tool AGG [10] is basically done; full integration
with AGG is ongoing work.

The GUI operations of the editor are syntax-directed such that the user is pro-
tected against making syntax errors while designing a control flow diagram C.
(For example, it is not possible to construct a goto loop via the A item.) The rule
names 7; from a given graph grammar G can be inserted into € via mouse & menu
only, which also supports a consistent control flow design.

The control flow diagrams designed by the user are pretty-layouted automati-

4June 20, 2000

440 ICALP 2000/ GT-VMT

cally by the control flow editor. However, the tool also allows the user to manip-
ulate the layout of a legal control structure via drag & drop for the sake of moye
sophisticated pictures. Fig.4 shows a screen shot of the AGG system together with
the control flow editor in the foreground.

Figure 4: screen shot of AGG with control flow editor

4 Summary and Outlook

Graph grammars need to be enhanced with sophisticated control structures for
several application purposes. Whilst other graph transformation systems offer ei-
ther visual or explicit control structures, our approach of control flow diagrams
supports the user in both visual and explicit control flow design. Our tool operates
fully syntax-directed in order to protect the user from making avoidable mistakes.
An operative run through a given control flow diagram with respect to a given
graph grammar and a given host graph is called a graph transformation.

In the future, one could think of hierarchical control flow diagrams which
contain further control flow diagrams in their activity items O. Provided with
such hierarchical structures one could, for example, switch the supply of possibly
applicable rules r; on the fly, similar to the concept of meta nodes in GRRR.

Acknowledgments. Thanks to our excellent programmer Qlga Runge! At the
moment, she is very busy with fully integrating the control flow editor into the
existing AGG system...

References

[1] C. Albayrak, Die WHILE-Hierarchie fiir Programmschemata.
Ph.D.Dissertation, Faculty of Computer Science, RWTH Aachen, 1998.

Gruner et al.: Visual Modeling for Controlling Graph Transformations 441

Shaker Publ. Aachen/Maastricht, 1998

[2] E. Dijkstra, GOTO Statement considered Harmful. Comm. ACM 11/3,
pp-147-148, 1968

(3] H. Ehrig et al. (Eds.), Handbook of Graph Grammars and Computing by
Graph Transformation, Vol 2 (Specifications and Programming). World Sci-
entific, Singapore 1999

H. Ehrig et al. (Eds.), Handbook of Graph Grammars and Computing by
Graph Transformation, Vol.3 (Concurrency). World Scientific, Singapore
1999

[4

e

~

[5] T. Fischer et al., Story Diagrams: a new Graph Rewrite Language based
on the UML and JAVA. H. Ehrig et al. (Eds.), TAGT'98 Workshop on The-
ory and Application of Graph Transformations. LNCS 1764, pp.296-309,
Springer-Verlag, Berlin 2000

[6] M. GroBe-Rhode et al., Modeling Distributed Systems by Modular Graph
Transformation based on Refinement via Rule Expressions. M. Nagl et al.
(Eds.), AGTIVE*99 Workshop: Applications of Graph Transformations with
Industrial Relevance. LNCS 1779, Springer-Verlag, Berlin 2000

[7]1 M. Kurt, Entwurf und Implementierung einer Kontrollkomponente fiir at-
tributierte Graphersetzung. M.Sc.Thesis, Faculty of Computer Science,
Techn. University of Berlin, 2000

(8] H.-J. Kreowski et al., Nested Transformation Units. International Journal on
Software Engineering and Knowledge Engineering 7/4, pp.479-502, 1997

[9] G. Rozenberg (Ed.), Handbook of Graph Grammars and Computing by
Graph Transformation, Vol.I (Foundations). World Scientific, Singapore
1997

[10] AGG, http://tfs.cs.tu-berlin.de/agg/

[11] GRRR, http://www.cs.ukc.ac.uk/people/staff/pjr6/gdgr/main.html

[12] JAvA, http://www.javasoft.com/

[13] PROGRES, http://www-i3.informatik.rwth-aachen.de/research/progres/

[14] UML, http://www.omg.org/uml/ or http://www.rational.com/uml/

Stefan Gruner is now with the Laboratoire Bordelais de Recherche en Informatique, Uni-
versité Bordeaux I, F-33405 Talence Cedex. His stay is generously granted by the TMR
network GETGRATS. During the preparation of this contribution, he was with the Tech-
nische Universitét Berlin. E-mail: stefan@cs.tu-berlin.de

